If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+6y-10=0
a = 3; b = 6; c = -10;
Δ = b2-4ac
Δ = 62-4·3·(-10)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{39}}{2*3}=\frac{-6-2\sqrt{39}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{39}}{2*3}=\frac{-6+2\sqrt{39}}{6} $
| 30=v/5-16 | | x/6+16.1=-3.1 | | 30x/100=14000 | | v=73,497-73,497(.21)(15) | | 2y+30=3y+15 | | (4x+7)=x2 | | -3+x/3=-16 | | 7x+29=-27 | | 7s+49=211 | | 7+49s=211 | | 5y+3=2y+27 | | x+5.4=7.38 | | 8x=7(2x+3) | | 5+x/5=25 | | 5y-16=3y-6 | | x-2.5=8.48 | | 7(x+80)=49 | | v=1/33.1415*29 | | 3^2x+1-28(3^x-1)+1=0 | | -7.5=-1.1+u/4 | | -4n+7=1-2n | | w+5.9=8.67 | | x+8=8(x+1 | | 2/3g=45g= | | 240=11-u | | Y-1=2/3(x+3) | | x-10=2x-27 | | 1/2y+14=6 | | -5=m+1.1 | | v-4.6=6.5 | | 2x-7=-5x+4 | | X+3/14=2/7+x-6/6 |